- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Adjeroh, Donald A (2)
-
Balagurusamy, Nagamani (2)
-
Lopez-Ortiz, Carlos (2)
-
Natarajan, Purushothaman (2)
-
Nimmakayala, Padma (2)
-
Reddy, Umesh K (2)
-
Talavera-Caro, Alicia (2)
-
Belcher, Samantha (1)
-
Benedito, Vagner A (1)
-
Chinreddy, Subramanyam Reddy (1)
-
Crummett, Garrett (1)
-
Das, Amartya (1)
-
Duhan, Ritik (1)
-
Flores-Iga, Gerardo (1)
-
Gracia-Rodriguez, Celeste (1)
-
Kadiyala, Sai Satish (1)
-
Karnatam, Krishna Sai (1)
-
Ku, Kang-Mo (1)
-
Kumar, Virender (1)
-
Ramireddy, Sahithi (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Capsicum chinense (habanero pepper) exhibits substantial variation in fruit pungency, color, and flavor due to its rich secondary metabolite composition, including capsaicinoids, carotenoids, and volatile organic compounds (VOCs). To dissect the genetic and regulatory basis of these traits, we conducted an integrative analysis across 244 diverse accessions using metabolite profiling, genome-wide association studies (GWAS), and transcriptome-wide association studies (TWAS). GWAS identified 507 SNPs for capsaicinoids, 304 for carotenoids, and 1176 for VOCs, while TWAS linked gene expression to metabolite levels, highlighting biosynthetic and regulatory genes in phenylpropanoid, fatty acid, and terpenoid pathways. Segmental RNA sequencing across fruit tissues of contrasting accessions revealed 7034 differentially expressed genes, including MYB31, 3-ketoacyl-CoA synthase, phytoene synthase, and ABC transporters. Notably, AP2 transcription factors and Pentatrichopeptide repeat (PPR) emerged as central regulators, co-expressed with carotenoid and VOC biosynthetic genes. High-resolution spatial transcriptomics (Stereo-seq) identified 74 genes with tissue-specific expression that overlap with GWAS and TWAS loci, reinforcing their regulatory relevance. To validate these candidates, we employed CRISPR/Cas9 to knock out AP2 and PPR genes in tomato. Widely targeted metabolomics and carotenoid profiling revealed major metabolic shifts: AP2 mutants accumulated higher levels of β-carotene and lycopene. In contrast, PPR mutants altered xanthophyll ester and apocarotenoid levels, supporting their roles in carotenoid flux and remodeling. This study provides the first integrative GWAS–TWAS–spatial transcriptomics in C. chinense, revealing key regulators of fruit quality traits. These findings lay the groundwork for precision breeding and metabolic engineering to enhance nutritional and sensory attributes in peppers.more » « lessFree, publicly-accessible full text available September 15, 2026
-
Belcher, Samantha; Flores-Iga, Gerardo; Natarajan, Purushothaman; Crummett, Garrett; Talavera-Caro, Alicia; Gracia-Rodriguez, Celeste; Lopez-Ortiz, Carlos; Das, Amartya; Adjeroh, Donald A; Nimmakayala, Padma; et al (, International Journal of Molecular Sciences)Curcumin, a polyphenol derived from Curcuma longa, used as a dietary spice, has garnered attention for its therapeutic potential, including antioxidant, anti-inflammatory, and antimicrobial properties. Despite its known benefits, the precise mechanisms underlying curcumin’s effects on consumers remain unclear. To address this gap, we employed the genetic model Drosophila melanogaster and leveraged two omics tools—transcriptomics and metabolomics. Our investigation revealed alterations in 1043 genes and 73 metabolites upon supplementing curcumin into the diet. Notably, we observed genetic modulation in pathways related to antioxidants, carbohydrates, and lipids, as well as genes associated with gustatory perception and reproductive processes. Metabolites implicated in carbohydrate metabolism, amino acid biosynthesis, and biomarkers linked to the prevention of neurodegenerative diseases such as schizophrenia, Alzheimer’s, and aging were also identified. The study highlighted a strong correlation between the curcumin diet, antioxidant mechanisms, and amino acid metabolism. Conversely, a lower correlation was observed between carbohydrate metabolism and cholesterol biosynthesis. This research highlights the impact of curcumin on the diet, influencing perception, fertility, and molecular wellness. Furthermore, it directs future studies toward a more focused exploration of the specific effects of curcumin consumption.more » « less
An official website of the United States government
